VII Всероссийская научная молодёжная школа-конференция: «Химия под знаком СИГМА: исследования, инновации, технологии состояния»

Динамические фазовые превращения магнитных гетероструктур

Ейхлер А.В 1 , Прудников П.В. 2,1

 1 Омский государственный университет им. Ф.М. Достоевского, г. Омск 2 Центр новых химических технологий ИК СО РАН, г. Омск

18 мая 2023 г.

Многообразие динамических фазовых переходов

Динамический фазовый переход происходит при изменении скорости воздействия внешних условий ¹, при быстром нагревании или охлаждении ², при изменении структуры за счет быстрого сжатия или расширения ³.

¹Schoner G., Kelso J. Science 239(4847), 1513–1520 (1988).

²S. Pleuksachat, P. Krabao, S. Pongha et al. Journal of Energy Chemistry 71, 452–459 (2022).

³Woodward C. E., Campion, M. Isbister, D. J. The Jour. of Chem. Phys. 116(7), 2983–2990 (2002).

Алексей Ейхлер (ОмГУ, г. Омск)

Открытие динамического фазового перехода в магнитных структурах во внешнем осциллирующем поле произошло, благодаря Монте-Карло расчетам в кинетической модели Изинга. ⁴. Экспериментальное подтверждение в $[Co/Pt]^5$

⁴Tomé, T., de Oliveira, M. J. Physical Review A, 41(8), 4251–4254 (1990).
 ⁵Robb D. T., Xu Y. H., Hellwig O., McCord J., Berger A. Phys. Rev. B, 78(13) (2008).

Алексей Ейхлер (ОмГУ, г. Омск)

18 мая 2023 г.

- Исследование неравновесных процессов в ультратонких анизотропных гейзенберговских пленках методами Монте-Карло;
- Выявление неравновесных зависимостей от внешнего воздействия;
- Построениефазовой диаграммы динамического фазового перехода;

Общий вид гамильтониана модели Гейзенберга:

$$H = -J \sum_{i,j} [(1 - \Delta(N))(S_i^{\mathsf{x}} S_j^{\mathsf{x}} + S_i^{\mathsf{y}} S_j^{\mathsf{y}}) + S_i^{\mathsf{z}} S_j^{\mathsf{z}}] - H(t) \sum_i S_i^{\mathsf{z}}$$
(1)

где $\overrightarrow{S_i} = (S_i^x, S_i^y, S_i^z)$ - трехмерный единичный вектор в узле.

- Моделирование проводилось с помощью методов Монте-Карло
- Исследовалась анизотропная модель Гейзенберга, $\Delta \neq 0.0$
- Внешнее магнитное поле задавалось как H(t) с амплитудой H_0 , соответствующей периодическому полю

Динамические фазы

Процесс неравновесной релаксации намагниченности в переодическом внешнем магнитном поле 6 характерезует динамический параметр порядка $Q(\Theta)$

$$Q = \frac{1}{2t_{1/2}} \int_0^{2t_{1/2}} m(t)dt;$$
(2)

Рис. 1: Временные зависимости намагниченности (сплошння линия) во внешнем осциллирующем поле (пунктирная красная линия), (а) динамически упорядоченная фаза с $\Theta < \Theta_c$, (b) динамически неупорядоченная фаза с $\Theta > \Theta_c$

⁶Tome, T., de Oliveira, M. J. Physical Review A, 41(8), 4251-4254 (1990).

Динамические фазы

- Θ безразмерный полупериод внешнего поля $\Theta = t_{1/2}/\langle au
 angle$,
- $t_{1/2}$ полупериод внешнего магнитного поля,
- $\langle \tau
 angle$ время жизни метастабильного состояния системы.

Рис. 2: Демонстрация разрушения метастабильного состояния для а) модели Изинга [7] b) модели Гейзенберга.

⁷Korniss G., White C. J., Rikvold P. A., Novotny M. A. Physical Review E 63(1) (2000);

Алексей Ейхлер (ОмГУ, г. Омск)

¹⁸ мая 2023 г.

Динамические фазы

Рис. 3: Значения параметра порядка Q при $T = 0.6T_c$ и $H_0 = 0.2J$ для L = 32. Горизонтальная линия в положительной области $Q \approx 0.8$: $\Theta = 0.54 < \Theta_c$. Сильно колеблющийся ряд: $\Theta = 0.94 \approx \Theta_c$ соответствует поведению намагниченности вблизи фазового перехода. Горизонтальный след $Q \approx 0$: $\Theta = 1.4 > \Theta_c$.

Значения \mathbf{Q} от Θ

Физическая температура T(N) и значения анизотропии $\Delta(N)$ были выбраны из работ 8 и 9 соответственно.

Рис. 4: Представлено поведение параметра порядка Q от Θ для линейного размера L = 64 и N = 5 (а) увеличение амплитуды поля H_0 (b) увеличение физической температуры T.

⁸Medvedeva.M.A , Prudnikov.P.V. J. Phys.: Conf. Ser.- 2014. - V.510. - Art.n 012024.

Алексей Ейхлер (ОмГУ, г. Омск)

⁹Prudnikov, P. V., Prudnikov, V. V., Mamonova, M. V., Piskunova, N. I.Journal of Magnetism and Magnetic Materials, 482, 201–205 (2019)

Динамический отклик

Внедрение поля смещения *H*^b происходило следующим образом:

$$H_b = \langle H(t) \rangle = \frac{1}{2t_{1/2}} \int_0^{2t_{1/2}} H(t) dt;$$
(3)

Рис. 5: На графике представлено схематическое изменение поведения намагниченности при добавлении поля смещения $H_0 \mp H_b$.

Рис. 6: Показано поведение намагниченности M(t) при добавлении с амплитуде поля H_0 (а) отрицательного поля смещения H_b (b) положительного поля смещения H_b .

Рис. 7: На графике представлено изменение петли гистерезиса относительно поля смещения H_b при увеличении полупериода $t_{1/2}$ влияния осциллирующего поля H(t) при линейном размере L = 64 и амплитуде поля H_b .

Эффекты гистерезиса

Экспериментальные данные взяты из работы ¹⁰.

Рис. 8: На графиках представлено изменение петли гистерезиса относительно поля смещения H_b при увеличении количества циклов осцилляций влияния осциллирующего поля H(t) для случая (а) нашего моделирования (b) экспериментальной работы.

¹⁰A. Berger, O. Idigoras, P. Vavassori, Phys. Rev. Letters 111(19) (2013).

Динамические фазовые диаграммы

Рис. 9: На графиках показаны неравновесные динамические фазовые диаграммы для параметра порядка и восприимчивости $(t_{1/2}, H_b)$ для амплитуды поля (а) $H_0 = 0.20J$ (b) $H_0 = 0.21J$.

Динамические фазовые диаграммы

Экспериментальные данные взяты из работы ¹¹.

Puc. 10: (a)–(c) Experimental $\langle Q \rangle$ (P, H_b), σ (P, H_b), and χ (P, H_b), maps for $H_0 = 29.8$ Oe, respectively. (d)–(f) show the same quantities for $H_0 = 30.8$ Oe. The color scale bars of $\langle Q \rangle$, σ , and χ are located on the right-hand side of (d), (e), and (f), respectively.

¹¹P. Riego, P. Vavassori, A. Berger, Phys. Rev. Letters, 118(11) (2017)

- Проведено численное моделирование динамического фазового перехода в ультранонких магнитных пленках с перпендикулярной анизотропией Co/Pt методами Монте- Карло;
- Выявлены гистерезисные эффекты согласующиеся с экспериментом;
- Ппостроена фазовая диаграмма динамического фазового перехода.

- Иследования были поддержаны грантом Минобрнауки РФ 0741-2020-0002
- Были использованы ресурсы:

- Вычислительной лаборатории теоретической физики, прикладного моделирования и параллельных вычислений ОмГУ, Омск;
- Вычислителительного центра ДВО РАН, Хабаровск.

Спасибо за внимание!