

VII Всероссийская научная молодёжная школа-конференция: «Химия под знаком СИГМА: исследования, инновации, технологии»

Квантовохимические расчёты функциональных свойств киральных гелимагнитных структур

Евсин Д.В. 1 , Прудников П.В. 2,1 , Мамонова М.В. 1 , Борзилов В.О. 1

 1 Омский государственный университет им. Ф.М. Достоевского, г. Омск 2 Центр новых химических технологий ИК СО РАН, г. Омск

Рис. 1. Кристаллическая структура одноосного кирального гелимагнетика $CrNb_3S_6$.

Плавление солитонной решетки в $CrNb_3S_6$

Рис. 2. Плавление КСР во внешнем магнитном поле в $CrNb_3S_6$ [3,4].

³Y. Togawa et al., Phys. Rev. Lett. 108, 107202 (2012);

⁴M. Mito et al., Phys. Rev. B. 97, 024408 (2018);

Плавление солитонной решетки в $CrNb_3S_6$

Рис. 3. Дискретность плавления КСР во внешнем магнитном поле в $CrNb_3S_6$ [6].

Плавление солитонной решетки в тонком сколе $\text{CrNb}_3\mathsf{S}_6$

Рис. 4. Плавление КСР в тонком сколе $CrNb_3S_6$ во внешнем магнитном поле [8].

⁸Y. Togawa et al., Phys. Rev. Lett. 122, 017204 (2019);

Цели

Для одноосного кирального гелимагнетика $CrNb_3S_6$ первопринципным методами:

- получить гелимагнитное упорядочение в системе;
- рассмотреть объёмную суперъячейку и ячейку плёнки;
- провести исследование сходимости по параметрам моделирования;
- исследовать поведение намагниченности в системе в зависимости от количества элементарных ячеек, входящих в суперъячейку.

VASP

Включение спин-орбитальной связи (SOC) в обычном вычислении DFT добавляет дополнительный член $H^{lphaeta}_{soc} \propto ec{\sigma} \cdot ec{L}$ к гамильтониану, который связывает оператор спина Паули $\vec{\sigma}$ с оператором углового момента $\vec{L} = \vec{r} \times \vec{p}$ [9]. В качестве релятивистской поправки SOC действует в непосредственной близости от ядер, так что предполагается, что вклады H_{soc} за пределами проекционно-присоединенных волн (PAW) незначительны. Таким образом, VASP вычисляет матричные элементы H_{soc} только для одноцентровых вкладов всех электронов

$$E_{soc}^{ij} = \delta_{\mathbf{R}_{i}\mathbf{R}_{j}} \delta_{l_{i}l_{j}} \sum_{n\mathbf{k}} w_{\mathbf{k}} f_{n\mathbf{k}} \sum_{\alpha\beta} \langle \tilde{\psi}_{n\mathbf{k}}^{\alpha} | \tilde{p}_{i} \rangle \langle \phi_{i} | H_{soc}^{\alpha\beta} | \phi_{j} \rangle \langle \tilde{p}_{j} | \tilde{\psi}_{n\mathbf{k}}^{\beta} \rangle$$
 (1)

где $\phi_i(\mathbf{r}) = R_i(|\mathbf{r} - \mathbf{R}_i|)Y_{l_im_i}(\mathbf{r} - \mathbf{R}_i)$ – парциальные волны атома с центром в \mathbf{R}_i , $ilde{\psi}_{n\mathbf{k}}^{lpha}$ – спинорная компонента lpha псевдоорбитали с индексом полосы пропускания n и вектором Блоха ${\bf k}$, а $f_{n{\bf k}}$ и $w_{\bf k}$ являются весами Ферми- и k- точек, соответственно.

⁹S. Steiner, S. Khmelevskyi, M. Marsman, G. Kresse, Phys. Rev. B — 2016. V. 93, 224 — P425.

Spin spirals in VASP

Для моделирования спиновых спиралей используется обобщённое условие Блоха:

$$\begin{bmatrix} \Psi_k^{\uparrow}(r) \\ \Psi_k^{\downarrow}(r) \end{bmatrix} = \begin{pmatrix} e^{-iq \cdot R/2} & 0 \\ 0 & e^{+iq \cdot R/2} \end{pmatrix} \begin{bmatrix} \Psi_k^{\uparrow}(r-R) \\ \Psi_k^{\downarrow}(r-R) \end{bmatrix}$$
 (2)

т. е. от одной элементарной ячейки к другой спиноры вверх и вниз получают дополнительный фазовый множитель $e^{-iq\cdot R/2}$ и $e^{-iq\cdot R/2}$, соответственно, где R — вектор кристаллической решётки,

q — так называемый вектор распространения спиновой спирали. Вектор распространения спиновой спирали обычно выбирается лежащим в пределах первой зоны Бриллюэна решётки обратного пространства.

Приведенное выше обобщённое условие Блоха приводит к следующему поведению плотности намагниченности:

$$m(r+R) = \begin{pmatrix} m_x(r)cos(q \cdot R) - m_y(r)sin(q \cdot R) \\ m_x(r)sin(q \cdot R) + m_y(r)cos(q \cdot R) \\ m_z(r) \end{pmatrix}$$
(3)

Spin spirals in VASP

Обобщенное условие Блоха переопределяет блоховские функции следующим образом:

$$\Psi_k^{\uparrow}(r) = \sum_G^N C_{kG}^{\uparrow} e^{i(k+G-q/2)\cdot r} \tag{4}$$

$$\Psi_k^{\downarrow}(r) = \sum_G^N C_{kG}^{\downarrow} e^{i(k+G+q/2) \cdot r} \tag{5}$$

Это лишь минимально изменяет гамильтониан:

$$\begin{pmatrix} H^{\uparrow\uparrow} & V_{xc}^{\uparrow\downarrow} \\ V_{xc}^{\downarrow\uparrow} & H^{\downarrow\downarrow} \end{pmatrix} \rightarrow \begin{pmatrix} H^{\uparrow\uparrow} & V_{xc}^{\uparrow\downarrow} e^{-iq\cdot r} \\ V_{xc}^{\downarrow\uparrow} e^{+iq\cdot r} & H^{\downarrow\downarrow} \end{pmatrix}, \tag{6}$$

где $H^{\uparrow\uparrow}$ и $H^{\downarrow\downarrow}$ кинетическая энергия компоненты плоской волны изменяется на:

$$H^{\uparrow\uparrow}: |k+G|^2 \to |k+G-q/2|^2 \tag{7}$$

$$H^{\uparrow\uparrow}: |k+G|^2 \to |k+G+q/2|^2$$
 (8)

Распространение спиновой спирали

Вектор распространения спиновой спиралия q=(0,0,1/n), где n это количество атомов Cr в суперъячейке, и направлен вдоль оси c.

Рис. 5. Ориентация вектора распространения спиновой спирали в системе.

Одинарная суперъячейка $Cr_2Nb_6S_{12}$

Рис. 6. Структура одинарной суперъячейки $Cr_2Nb_6S_{12}$ (1) — изометрическое представление, (2) — проекция на плоскость cy, (3) — проекция на плоскость ab.

Кристаллографические оси a и c соответствуют координатным осям x и z, ось b имеет x и y состовляющие.

 $CrNb_3S_6$ относится к $P6_322$ группе симметрии, постоянная решётки $c=12.101 {\rm \AA}\, [10].$

¹⁰ N. J. Ghimire ... et al., Phys. Rev. B - 2013. V. 87, 104 - P403.

Параметры сходимости

Рис. 7. Сходимость полной энергии системы по к-точкам.

В дальнейших расчётах количество к-точек принималось равным $4\times4\times4$ для объёмной структуры и $1\times4\times4$ для плёнки, энергия обрезания - 500 эВ; для плёнки вакуумный слой принимался равным — 5Å.

Одинарная объёмная ячейка

Заданные значения намагниченности:

$$Cr_1 - \mu_X = 3.000 \mu_B$$
, $\mu_Y = 0.000 \mu_B$; $Cr_2 - \mu_X = 0.000 \mu_B$, $\mu_Y = 3.000 \mu_B$;

Полученные значения намагниченности:

$$Cr_1 - \mu_X = 1.981 \mu_B$$
, $\mu_Y = -1.981 \mu_B$;

$$Cr_2 - \mu_X = 1.982\mu_B$$
, $\mu_Y = -1.981\mu_B$;

 E_{tot} = -150.92575 eV

Одинарная ячейка плёнки

Заданные:

$$Cr_1 - \mu_X = 3.000 \mu_B$$
, $\mu_Y = 0.000 \mu_B$; $Cr_2 - \mu_X = 0.000 \mu_B$, $\mu_Y = 3.000 \mu_B$;

Полученные после расчета:

$$Cr_1 - \mu_X$$
=-0.072 μ_B , μ_Y =-3.003 μ_B ; $Cr_2 - \mu_X$ = 3.018 μ_B , μ_Y =-0.077 μ_B ; E_{tot} = -142.71310 eV

Двойная вдоль c объёмная ячейка

Заданные значения намагниченности:

 $Cr_1 - \mu_X = 3.000 \mu_B$, $\mu_Y = 0.000 \mu_B$;

 $Cr_2 - \mu_X = 3.000 \mu_B$, $\mu_Y = 0.000 \mu_B$;

 $Cr_3 - \mu_X = 0.000 \mu_B$, $\mu_Y = 3.000 \mu_B$;

 $Cr_4 - \mu_X = 0.000 \mu_B$, $\mu_Y = 3.000 \mu_B$.

$$Cr_1 - \mu_X = 2.705\mu_B$$
, $\mu_Y = -0.589\mu_B$;

$$Cr_2 - \mu_X = 1.832\mu_B$$
, $\mu_Y = 2.115\mu_B$;

$$Cr_3 - \mu_X = -1.833 \mu_B$$
, $\mu_Y = 2.114 \mu_B$;

$$Cr_4 - \mu_X = -2.706\mu_B$$
, $\mu_Y = -0.589\mu_B$.

$$E_{tot}$$
= -301.83661 eV

Двойная вдоль c ячейка плёнки

Заданные значения намагниченности:

```
Cr_1 - \mu_X = 3.000 \mu_B, \mu_Y = 0.000 \mu_B;
```

 $Cr_2 - \mu_X = 3.000 \mu_B$, $\mu_Y = 0.000 \mu_B$;

 $Cr_3 - \mu_X = 0.000 \mu_B$, $\mu_Y = 3.000 \mu_B$;

 $Cr_4 - \mu_X = 0.000 \mu_B$, $\mu_Y = 3.000 \mu_B$.

$$Cr_1 - \mu_X = 1.343\mu_B$$
, $\mu_Y = -1.497\mu_B$;

$$Cr_2 - \mu_X = -1.918 \mu_B$$
, $\mu_Y = 2.460 \mu_B$;

$$Cr_3 - \mu_X = 1.566\mu_B, \ \mu_Y = 2.466\mu_B, \ Cr_3 - \mu_X = 1.566\mu_B, \ \mu_Y = 2.011\mu_B;$$

$$Cr_3 - \mu_X = 1.300\mu_B$$
, $\mu_Y = 2.011\mu_B$

$$Cr_4 - \mu_X = -2.228 \mu_B$$
, $\mu_Y = -1.240 \mu_B$.

$$E_{tot}$$
= -285.47803 eV

Двойная вдоль a объёмная ячейка

Заданные значения намагниченности:

```
Cr_1 - \mu_X = 3.000\mu_B, \mu_Y = 0.000\mu_B; Cr_2 - \mu_X = 3.000\mu_B, \mu_Y = 0.000\mu_B; Cr_3 - \mu_X = 0.000\mu_B, \mu_Y = 3.000\mu_B; Cr_4 - \mu_X = 0.000\mu_B, \mu_Y = 3.000\mu_B.
```

$$Cr_1 - \mu_X = 1.982\mu_B, \ \mu_Y = -1.982\mu_B; \ Cr_2 - \mu_X = 1.982\mu_B, \ \mu_Y = -1.982\mu_B; \ Cr_3 - \mu_X = 1.982\mu_B, \ \mu_Y = -1.982\mu_B; \ Cr_4 - \mu_X = 1.982\mu_B, \ \mu_Y = -1.982\mu_B. \ E_{tot} = -301.85300 \ eV$$

Двойная вдоль а ячейка плёнки

Заданные значения намагниченности:

```
Cr_1 - \mu_X = 3.000\mu_B, \mu_Y = 0.000\mu_B; Cr_2 - \mu_X = 3.000\mu_B, \mu_Y = 0.000\mu_B; Cr_3 - \mu_X = 0.000\mu_B, \mu_Y = 3.000\mu_B; Cr_4 - \mu_X = 0.000\mu_B, \mu_Y = 3.000\mu_B.
```

$$Cr_1 - \mu_X = 2.375\mu_B$$
, $\mu_Y = -2.343\mu_B$; $Cr_2 - \mu_X = 1.858\mu_B$, $\mu_Y = -1.852\mu_B$; $Cr_3 - \mu_X = 2.090\mu_B$, $\mu_Y = -2.066\mu_B$; $Cr_4 - \mu_X = 2.260\mu_B$, $\mu_Y = -2.229\mu_B$. $E_{tot} = -301.83661 \ eV$

Двойная вдоль a и c объёмная ячейка

Заданные значения намагниченности:

$$Cr_1 - \mu_X = 3.000 \mu_B, \ \mu_Y = 0.000 \mu_B; \ Cr_2 - \mu_X = 3.000 \mu_B, \ \mu_Y = 0.000 \mu_B; \ Cr_3 - \mu_X = 3.000 \mu_B, \ \mu_Y = 0.000 \mu_B; \ Cr_4 - \mu_X = 3.000 \mu_B, \ \mu_Y = 0.000 \mu_B; \ Cr_5 - \mu_X = 0.000 \mu_B, \ \mu_Y = 3.000 \mu_B; \ Cr_6 - \mu_X = 0.000 \mu_B, \ \mu_Y = 3.000 \mu_B; \ Cr_7 - \mu_X = 0.000 \mu_B + \mu_Y = 3.000 \mu_B; \ Cr_7 - \mu_X = 0.000 \mu_B + \mu_Y = 3.000 \mu_B; \ Cr_7 - \mu_X = 0.000 \mu_B + \mu_Y = 3.000 \mu_B; \ Cr_7 - \mu_X = 0.000 \mu_B + \mu_Y = 3.000 \mu_B; \ Cr_7 - \mu_X = 0.000 \mu_B + \mu_Y = 3.000 \mu_B; \ Cr_7 - \mu_X = 0.000 \mu_B + \mu_Y = 3.000 \mu_B; \ Cr_7 - \mu_X = 0.000 \mu_B + \mu_Y = 3.000 \mu_B; \ Cr_7 - \mu_X = 0.000 \mu_B + \mu_Y = 3.000 \mu_B; \ Cr_7 - \mu_X = 0.000 \mu_B + \mu_Y = 3.000 \mu_B; \ Cr_7 - \mu_X = 0.000 \mu_B + \mu_Y = 3.000 \mu_B; \ Cr_7 - \mu_X = 0.000 \mu_B + \mu_Y = 3.000 \mu_B; \ Cr_7 - \mu_X = 0.000 \mu_B + \mu_Y = 3.000 \mu_B; \ Cr_7 - \mu_X = 0.000 \mu_B + \mu_Y = 3.000 \mu_B; \ Cr_7 - \mu_X = 0.000 \mu_B + \mu_Y = 3.000 \mu_B; \ Cr_7 - \mu_X = 0.000 \mu_B + \mu_Y = 3.000 \mu_B +$$

 $Cr_8 - \mu_X = 0.000 \mu_B$, $\mu_Y = 3.000 \mu_B$.

Полученные значения намагниченности:

$$Cr_1 - \mu_X = 2.788\mu_B, \ \mu_Y = 0.220\mu_B; \ Cr_2 - \mu_X = -1.572\mu_B, \ \mu_Y = 2.329\mu_B; \ Cr_3 - \mu_X = 2.787\mu_B, \ \mu_Y = 0.221\mu_B; \ Cr_4 - \mu_X = -1.572\mu_B, \ \mu_Y = 2.329\mu_B;$$

$$Cr_5 - \mu_X = 1.572\mu_B$$
, $\mu_Y = 2.329\mu_B$; $Cr_6 - \mu_X = -2.787\mu_B$, $\mu_Y = 0.220\mu_B$;

$$Cr_7 - \mu_X = 1.572\mu_B$$
, $\mu_Y = 2.329\mu_B$;

$$Cr_8 - \mu_X$$
=-2.787 μ_B , μ_Y = 0.220 μ_B .

 $E_{tot} = -603.67982 \ eV$

Четырёхкратная вдоль c объёмная ячейка

Заданные значения намагниченности:

- $Cr_1 \mu_X = 3.000 \mu_B$, $\mu_Y = 0.000 \mu_B$; $Cr_2 - \mu_X = 3.000 \mu_B$, $\mu_Y = 0.000 \mu_B$;
- $Cr_3 \mu_X = 3.000 \mu_B$, $\mu_Y = 0.000 \mu_B$;
- $Cr_4 \mu_X = 3.000 \mu_B$, $\mu_Y = 0.000 \mu_B$;
- $Cr_5 \mu_X = 0.000 \mu_B$, $\mu_Y = 3.000 \mu_B$;
- $Cr_6 \mu_X = 0.000 \mu_B$, $\mu_Y = 3.000 \mu_B$;
- $Cr_7 \mu_X = 0.000 \mu_B$, $\mu_Y = 3.000 \mu_B$;
- $Cr_8 \mu_X = 0.000 \mu_B$, $\mu_Y = 3.000 \mu_B$.

- $Cr_1 \mu_X = 2.791\mu_B$, $\mu_Y = -0.047\mu_B$;
- $Cr_2 \mu_X = 0.679 \mu_B$, $\mu_Y = 0.679 \mu_B$;
- $Cr_3 \mu_X = 2.535\mu_B$, $\mu_Y = -1.192\mu_B$;
- $Cr_4 \mu_X = -2.264 \mu_B$, $\mu_Y = -2.264 \mu_B$;
- $Cr_5 \mu_X = 0.433 \mu_B$, $\mu_Y = 2.769 \mu_B$;
- $Cr_6 \mu_X = -0.951 \mu_B$, $\mu_Y = -2.635 \mu_B$;
- $Cr_7 \mu_X = 1.438 \mu_B$, $\mu_Y = 2.403 \mu_B$;
- $Cr_8 \mu_X = -1.942 \mu_B$, $\mu_Y = -2.004 \mu_B$.
- E_{tot} = -603.67982 eV

Десятикратная вдоль $\it c$ объёмная ячейка

Десятикратная вдоль c ячейка немагнитной плёнки

Значения намагниченности атомов Cr, полная энергия системы и расчётное время.

П	quantity of cels			1		2								4				8			10				
	quantity of cels	1				2c				2a				2c 2a				4c				10c			
	for abc-axis									The state of the s															
	type of struct	bulk		film		bulk (8kpt)		film		bulk		film		bulk		film		bulk		film		bulk		film	
	E tot (eV)	-150.92575		-142.71310		-301.83661		-285.47803		-301.85301		-289.43249		-603.67982		-578.86549		-603.67982		(calculating)		-1508.99256			
H	component of magn	х	у	x	У	×	у	х	у	x	У	x	У	х	у	x	У	х	у	x	у	×	У	х	У
	1	1.981	-1.981	-0.072	-3.003	2.791	-0.027	1.343	-1.497	-1.982	-1.982	2.375	-2.343	2.788	0.220	3.320	0.229	2.791	-0.047			2.809	-0.021		1
	2	1.982	-1.981	3.018	-0.077	-1.572	2.327	-1.918	2.460	-1.982	-1.982	1.858	-1.852	-1.572	2.329	-1.906	2.748	0.679	0.679			-2.813	0.111		
	3							1.566	2.011	-1.982	-1.982	2.090	-2.066	2.787	0.221	2.151	1.512	2.535	-1.192			2.808	-0.199		
	4							-2.228	-1.240	-1.982	-1.982	2.260	-2.229	-1.572	2.329	-1.700	1.997	-2.264	-2.264			-2.800	0.289		
	5													1.572	2.329	1.713	2.377	0.433	2.769			2.790	-0.376		
	6													-2.787	0.220	-2.816	0.836	-0.951	-2.635			-2.777	0.462		
	7													1.572	2.329	1.967	2.500	1.438	2.403			2.762	-0.547		
12	8													-2.787	0.220	-3.150	0.456	-1.942	-2.004			-2.744	0.634		
atoms	9																					2.723	-0.720		
č	10																					-2.700	0.799		
žě	11																					0.076	2.814		
Number	12																					-0.157	-2.810		
ž	13																					0.246	2.804		
	14																					-0.333	-2.795		
	15																					0.419	2.784		
	16																					-0.504	-2.770		
	17																					0.590	2.753		
	18																					-0.678	-2.733		
	19																	_				0.763	2.711		1
	20																					-0.848	-2.678		
	calc time (hrs)	2.34		87.2		30.9		27.5		3.17		29.2		39.94		135.22		52.4		> 110		297.3			onths?
L	cores	4 epyc	4 epyc_7302		4 epyc_7302		24 epyc_7302		20 POWER8		24 epyc_7302		8 epyc_7302		24 epyc_7302		16 epyc_7302		16 epyc_7302		80 POWER8		16 epyc_7302		c_7302

Заключение

- В данной работе было проведено моделирование одноосного кирального гелимагнетика в рамках первопринципного пакета VASP.
- Выявлено гелимагнитное состояние в объемной и плёночной структуре.
- Был проведен расчет для структуры размером 12 нм.
- Были вычислены магнитные моменты атомов хрома в различных ячейках неколлинеарным подходом, а так же полные энергии систем.

Спасибо за внимание!

Ресурсоёмкость относительно k-points

Рис. 8. Время и оперативная память на один MPI-поток, затраченные на расчёт одинарной объёмной ячейки $CrNb_3S_6$.

Плавление солитонной решетки $CrNb_3S_6$

Рис. 9. Плавление КСР во внешнем магнитном поле в $CrNb_3S_6$ [12].

¹²Y. Togawa et al., Phys. Rev. Lett. 108, 107202 (2012);

Рис. 10. Плавление КСР во внешнем магнитном поле в в тонком сколе $CrNb_3S_6$ [14].

¹⁴Y. Togawa et al., Phys. Rev. Lett. 122, 017204 (2019);

VASP

Использовался пакет VASP (Vienna Ab Initio Simulation Package) - это комплексный пакет для выполнения ab initio квантового механического моделирования с использованием псевдопотенциалов или метода проекционных волн и базисного набора плоских волн. Подход, реализованный в VASP, основан на приближении локальной плотности (конечной температуры) со свободной энергией как вариационной величиной и точной оценке мгновенного основного состояния электрона на каждом временном шаге. VASP использует эффективные схемы диагонализации матрицы и эффективное смешение плотности заряда Бройдена. Взаимодействие между ионами и электронами описывается методом проекционно-усиленной волны (PAW). PAW позволяет значительно уменьшить количество плоских волн на атом для переходных металлов и элементов первого ряда. Силы и полный тензор напряжений могут быть рассчитаны с помощью VASP и использованы для релаксации атомов в их мгновенное основное состояние.

ab initio

В основе первопринципных расчетов электронной и кристаллической стуктуры магнитных материалов лежит спиновая теория функционала плотност и(SDFT). Теория функционала плотности - один из широко используемых методов расчета электронной структуры систем многих частиц в квантовой физике и квантовой химии как молекул так и конденсированного вещества. Основная идея SDFT - при описании электронной подсистемы, заменить многоэлектронную волновую функцию $\Psi(r_1,...,r_N)$ электронной плотностью $\rho(r)$, чтобы уменьшить число свободных переменных. Чтобы обеспечить возможность расчета магнитных свойств, энергия системы записывается в виде функционала не только электронной плотности $\rho(r)$, но и плотности намагниченности m(r).

Волновые функции Кона-Шэма заменяются двухкомпонентными волновыми функциями Паули $\Psi_{\alpha i}(r)$ способны представлять как плотность электронов и намагниченную плотность. Индекс α обозначает здесь спиновые состояния.

ab initio

$$\rho(r) = \left\langle \Psi | \sum_{i=1}^{N} \delta(r - r_i) | \Psi \right\rangle = \sum_{v=1}^{N} \sum_{a=1,2} |\Psi_v(r)|^2$$
(9)

$$m(r) = \sum_{v=1}^{N} \Psi_v^*(r) \sigma \Psi_v(r)$$
(10)

$$\sigma = \sigma_x \hat{x} + \sigma_y \hat{y} + \sigma_z \hat{z}, \tag{11}$$

где σ_x , σ_y и σ_z матрицы Паули.

ab initio

Из вариационного принципа получаются уравнения Кона-Шэма, аналогичные уравнениям Шредингера-Паули.

$$\left\{ -\frac{\hbar^2}{2m} \nabla^2 + V_{eff} + \sigma \cdot B_{eff}(r) - \varepsilon_v \right\} \Psi_v(r) = 0$$
 (12)

Эффективное магнитное поле B_{eff} состоит из вклада B_{xc} возникающего из обменно-корреляционной энергии и вклада B_{ext} из внешнего поля.

$$B_{eff} = B_{xc} + B_{ext} \tag{13}$$

$$B_{xc} = \frac{\partial E_{xc}[\rho(r), m(r)]}{\partial m(r)} \tag{14}$$

Включение спин-орбитальной связи (SOC) в обычном вычислении DFT добавляет дополнительный член $H_{soc}^{\alpha\beta}\propto \vec{\sigma}\cdot\vec{L}$ к гамильтониану, который связывает оператор спина Паули $\vec{\sigma}$ с оператором углового момента $\vec{L}=\vec{r}\times\vec{p}$. [15] В качестве релятивистской поправки SOC действует в непосредственной близости от ядер, так что предполагается, что вклады H_{soc} за пределами PAW незначительны. Таким образом, VASP вычисляет матричные элементы H_{soc} только для одноцентровых вкладов всех электронов

$$E_{soc}^{ij} = \delta_{\mathbf{R}_{i}\mathbf{R}_{j}} \delta_{l_{i}l_{j}} \sum_{n\mathbf{k}} w_{\mathbf{k}} f_{n\mathbf{k}} \sum_{\alpha\beta} \langle \tilde{\psi}_{n\mathbf{k}}^{\alpha} | \tilde{p}_{i} \rangle \langle \phi_{i} | H_{soc}^{\alpha\beta} | \phi_{j} \rangle \langle \tilde{p}_{j} | \tilde{\psi}_{n\mathbf{k}}^{\beta} \rangle$$
 (15)

где $\phi_i({\bf r})=R_i(|{\bf r}-{\bf R}_i|)Y_{l_im_i}({\bf r}-{\bf R}_i)$ - парциальные волны атома с центром в ${\bf R}_i$, $\tilde{\psi}_{n{\bf k}}^{\alpha}$ — — спинорная компонента α псевдоорбитали с индексом полосы пропускания n и вектором Блоха ${\bf k}$, а $f_{n{\bf k}}$ и $w_{\bf k}$ являются Ферми- и k—точками, соответственно[10].

¹⁵Steiner S., Khmelevskyi S., Marsman M., Kresse G., Phys. Rev. B — 2016. V. 93, 224 — P425.

Двойная вдоль a и c ячейка плёні

Заданные значения намагниченности:

$$Cr_1 - \mu_X = 3.000 \mu_B$$
, $\mu_Y = 0.000 \mu_B$;

$$Cr_2 - \mu_X = -3.000 \mu_B$$
, $\mu_Y = 0.000 \mu_B$;

$$Cr_3 - \mu_X = 3.000 \mu_B$$
, $\mu_Y = 0.000 \mu_B$;

$$Cr_4 - \mu_X = -3.000 \mu_B$$
, $\mu_Y = 0.000 \mu_B$.

$$Cr_5 - \mu_X = 0.000 \mu_B$$
, $\mu_Y = 3.000 \mu_B$.

$$Cr_6 - \mu_X = 0.000 \mu_B$$
, $\mu_Y = -3.000 \mu_B$.

$$Cr_7 - \mu_X = 0.000 \mu_B$$
, $\mu_Y = 3.000 \mu_B$.

$$C_T - \mu_X = 0.000 \mu_B, \ \mu_Y = 3.000 \mu_B.$$

$Cr_8 - \mu_X = 0.000 \mu_B$, $\mu_Y = -3.000 \mu_B$.

Полученные значения намагниченности:

$$Cr_1 - \mu_X = 3.320 \mu_B$$
, $\mu_Y = 0.229 \mu_B$;

$$Cr_2 - \mu_X = -1.906 \mu_B$$
, $\mu_Y = 2.748 \mu_B$;

$$Cr_3 - \mu_X = 2.151\mu_B$$
, $\mu_Y = 1.512\mu_B$;

$$Cr_3 - \mu_X = 2.151\mu_B$$
, $\mu_Y = 1.512\mu_B$; $Cr_4 - \mu_X = -1.700\mu_B$, $\mu_Y = 1.997\mu_B$.

$$Cr_{r} - \mu_{r} = 1.713\mu_{B}, \ \mu_{r} = 2.377\mu_{B}$$

$$Cr_5 - \mu_X = 1.713\mu_B, \ \mu_Y = 2.377\mu_B.$$

$$Cr_6 - \mu_X = -2.816\mu_B$$
, $\mu_Y = 0.836\mu_B$.

$$Cr_7 - \mu_X = 1.967 \mu_B, \ \mu_Y = 2.500 \mu_B.$$

$$Cr_8 - \mu_X = -3.150 \mu_B$$
, $\mu_Y = 0.456 \mu_B$.

$E_{tot} = -578.86547eV$

