

VII Всероссийская научная молодёжная школа-конференция: «Химия под знаком СИГМА: исследования, инновации, технологии»

Квантовохимические расчёты функциональных свойств киральных гелимагнитных структур

Евсин Д.В.¹, Прудников П.В.^{2,1}, Мамонова М.В.¹, Борзилов В.О.¹

 1 Омский государственный университет им. Ф.М. Достоевского, г. Омск 2 Центр новых химических технологий ИК СО РАН, г. Омск

Рис. 1. Кристаллическая структура одноосного кирального гелимагнетика $CrNb_3S_6$.

Дмитрий Евсин

Химия под знаком СИГМА

Плавление солитонной решетки в CrNb₃S₆

Рис. 2. Плавление КСР во внешнем магнитном поле в $CrNb_3S_6$ [3,4].

- ³Y. Togawa et al., Phys. Rev. Lett. 108, 107202 (2012);
- ⁴M. Mito et al., Phys. Rev. B. 97, 024408 (2018);

Плавление солитонной решетки в CrNb₃S₆

Рис. 3. Дискретность плавления КСР во внешнем магнитном поле в CrNb₃S₆ [6].

⁶Y. Togawa et al., J. Phys. Soc. Jpn. 85, 112001 (2016); Дмитрий Евсин Химия под знаком СИГМА

Плавление солитонной решетки в тонком сколе CrNb₃S₆

Рис. 4. Плавление КСР в тонком сколе $CrNb_3S_6$ во внешнем магнитном поле [8].

⁸Y. Togawa et al., Phys. Rev. Lett. 122, 017204 (2019);

Для одноосного кирального гелимагнетика $CrNb_3S_6$ первопринципным методами:

- получить гелимагнитное упорядочение в системе;
- рассмотреть объёмную суперъячейку и ячейку плёнки;
- провести исследование сходимости по параметрам моделирования;
- исследовать поведение намагниченности в системе в зависимости от количества элементарных ячеек, входящих в суперъячейку.

Включение спин-орбитальной связи (SOC) в обычном вычислении DFT добавляет дополнительный член $H_{soc}^{\alpha\beta} \propto \vec{\sigma} \cdot \vec{L}$ к гамильтониану, который связывает оператор спина Паули $\vec{\sigma}$ с оператором углового момента $\vec{L} = \vec{r} \times \vec{p}$ [9]. В качестве релятивистской поправки SOC действует в непосредственной близости от ядер, так что предполагается, что вклады H_{soc} за пределами проекционно-присоединенных волн (PAW) незначительны. Таким образом, VASP вычисляет матричные элементы H_{soc} только для одноцентровых вкладов всех электронов

$$E_{soc}^{ij} = \delta_{\mathbf{R}_{i}\mathbf{R}_{j}} \delta_{l_{i}l_{j}} \sum_{n\mathbf{k}} w_{\mathbf{k}} f_{n\mathbf{k}} \sum_{\alpha\beta} \langle \tilde{\psi}_{n\mathbf{k}}^{\alpha} | \tilde{p}_{i} \rangle \langle \phi_{i} | H_{soc}^{\alpha\beta} | \phi_{j} \rangle \langle \tilde{p}_{j} | \tilde{\psi}_{n\mathbf{k}}^{\beta} \rangle$$
(1)

где $\phi_i(\mathbf{r}) = R_i(|\mathbf{r} - \mathbf{R}_i|)Y_{l_im_i}(\mathbf{r} - \mathbf{R}_i)$ – парциальные волны атома с центром в \mathbf{R}_i , $\tilde{\psi}^{\alpha}_{n\mathbf{k}}$ – спинорная компонента α псевдоорбитали с индексом полосы пропускания n и вектором Блоха \mathbf{k} , а $f_{n\mathbf{k}}$ и $w_{\mathbf{k}}$ являются весами Ферми- и k- точек, соответственно.

⁹S. Steiner, S. Khmelevskyi, M. Marsman, G. Kresse, Phys. Rev. B — 2016. V. 93, 224 — P425.

Для моделирования спиновых спиралей используется обобщённое условие Блоха:

$$\begin{bmatrix} \Psi_k^{\uparrow}(r) \\ \Psi_k^{\downarrow}(r) \end{bmatrix} = \begin{pmatrix} e^{-iq \cdot R/2} & 0 \\ 0 & e^{+iq \cdot R/2} \end{pmatrix} \begin{bmatrix} \Psi_k^{\uparrow}(r-R) \\ \Psi_k^{\downarrow}(r-R) \end{bmatrix}$$
(2)

т. е. от одной элементарной ячейки к другой спиноры вверх и вниз получают дополнительный фазовый множитель $e^{-iq \cdot R/2}$ и $e^{-iq \cdot R/2}$, соответственно, где R – вектор кристаллической решётки,

q – так называемый вектор распространения спиновой спирали.

Вектор распространения спиновой спирали обычно выбирается лежащим в пределах первой зоны Бриллюэна решётки обратного пространства.

Приведенное выше обобщённое условие Блоха приводит к следующему поведению плотности намагниченности:

$$m(r+R) = \begin{pmatrix} m_x(r)cos(q \cdot R) - m_y(r)sin(q \cdot R) \\ m_x(r)sin(q \cdot R) + m_y(r)cos(q \cdot R) \\ m_z(r) \end{pmatrix}$$
(3)

Spin spirals in VASP

Обобщенное условие Блоха переопределяет блоховские функции следующим образом:

$$\Psi_k^{\uparrow}(r) = \sum_G^N C_{kG}^{\uparrow} e^{i(k+G-q/2) \cdot r} \tag{4}$$

$$\Psi_k^{\downarrow}(r) = \sum_G^N C_{kG}^{\downarrow} e^{i(k+G+q/2) \cdot r}$$
(5)

Это лишь минимально изменяет гамильтониан:

$$\begin{pmatrix} H^{\uparrow\uparrow} & V_{xc}^{\uparrow\downarrow} \\ V_{xc}^{\downarrow\uparrow} & H^{\downarrow\downarrow} \end{pmatrix} \to \begin{pmatrix} H^{\uparrow\uparrow} & V_{xc}^{\uparrow\downarrow}e^{-iq\cdot r} \\ V_{xc}^{\downarrow\uparrow}e^{+iq\cdot r} & H^{\downarrow\downarrow} \end{pmatrix},$$
(6)

где $H^{\uparrow\uparrow}$ и $H^{\downarrow\downarrow}$ кинетическая энергия компоненты плоской волны изменяется на:

$$H^{\uparrow\uparrow}:|k+G|^2 \to |k+G-q/2|^2 \tag{7}$$

$$H^{\uparrow\uparrow}: |k+G|^2 \to |k+G+q/2|^2 \tag{8}$$

Распространение спиновой спирали

Вектор распространения спиновой спиралия q = (0, 0, 1/n), где n это количество атомов Cr в суперъячейке, и направлен вдоль оси c.

Рис. 5. Ориентация вектора распространения спиновой спирали в системе.

Одинарная суперъячейка $Cr_2Nb_6S_{12}$

Рис. 6. Структура одинарной суперъячейки $Cr_2Nb_6S_{12}$

(1) – изометрическое представление, (2) – проекция на плоскость cy, (3) – проекция на плоскость ab.

Кристаллографические оси a и c соответствуют координатным осям x и z, ось b имеет x и y состовляющие.

 $CrNb_3S_6$ относится к $P6_322$ группе симметрии, постоянная решётки c = 12.101Å [10].

¹⁰N. J. Ghimire ... et al., Phys. Rev. B — 2013. V. 87, 104 — P403.

Параметры сходимости

Рис. 7. Сходимость полной энергии системы по к-точкам.

В дальнейших расчётах количество к-точек принималось равным 4х4х4 для объёмной структуры и 1х4х4 для плёнки, энергия обрезания - 500 эВ; для плёнки вакуумный слой принимался равным – 5Å.

```
Дмитрий Евсин
```

Одинарная объёмная ячейка

Заданные значения намагниченности: $Cr_1 - \mu_X = 3.000\mu_B, \ \mu_Y = 0.000\mu_B;$ $Cr_2 - \mu_X = 0.000\mu_B, \ \mu_Y = 3.000\mu_B;$

Полученные значения намагниченности: $Cr_1 - \mu_X = 1.981\mu_B$, $\mu_Y = -1.981\mu_B$; $Cr_2 - \mu_X = 1.982\mu_B$, $\mu_Y = -1.981\mu_B$; $E_{tot} = -150.92575 \ eV$

Одинарная ячейка плёнки

Заданные:

 $\begin{array}{l} Cr_1 - \mu_X = 3.000 \mu_B, \ \mu_Y = 0.000 \mu_B; \\ Cr_2 - \mu_X = 0.000 \mu_B, \ \mu_Y = 3.000 \mu_B; \end{array}$

Полученные после расчета: $Cr_1 - \mu_X = -0.072 \mu_B, \ \mu_Y = -3.003 \mu_B;$ $Cr_2 - \mu_X = 3.018 \mu_B, \ \mu_Y = -0.077 \mu_B;$ $E_{tot} = -142.71310 \ eV$

Двойная вдоль с объёмная ячейка

Заданные значения намагниченности: $Cr_1 - \mu_X = 3.000 \mu_B, \ \mu_Y = 0.000 \mu_B;$ $Cr_2 - \mu_X = 3.000 \mu_B, \ \mu_Y = 0.000 \mu_B;$ $Cr_3 - \mu_X = 0.000 \mu_B, \ \mu_Y = 3.000 \mu_B;$ $Cr_4 - \mu_X = 0.000 \mu_B, \ \mu_Y = 3.000 \mu_B.$

Полученные значения намагниченности: $Cr_1 - \mu_X = 2.705\mu_B, \ \mu_Y = -0.589\mu_B;$ $Cr_2 - \mu_X = 1.832\mu_B, \ \mu_Y = 2.115\mu_B;$ $Cr_3 - \mu_X = -1.833\mu_B, \ \mu_Y = 2.114\mu_B;$ $Cr_4 - \mu_X = -2.706\mu_B, \ \mu_Y = -0.589\mu_B.$ $E_{tot} = -301.83661 \ eV$

Двойная вдоль c ячейка плёнки

Заданные значения намагниченности: $Cr_1 - \mu_X = 3.000 \mu_B, \ \mu_Y = 0.000 \mu_B;$ $Cr_2 - \mu_X = 3.000 \mu_B, \ \mu_Y = 0.000 \mu_B;$ $Cr_3 - \mu_X = 0.000 \mu_B, \ \mu_Y = 3.000 \mu_B;$ $Cr_4 - \mu_X = 0.000 \mu_B, \ \mu_Y = 3.000 \mu_B.$

Полученные значения намагниченности: $Cr_1 - \mu_X = 1.343 \mu_B, \ \mu_Y = -1.497 \mu_B;$ $Cr_2 - \mu_X = -1.918 \mu_B, \ \mu_Y = 2.460 \mu_B;$ $Cr_3 - \mu_X = 1.566 \mu_B, \ \mu_Y = 2.011 \mu_B;$ $Cr_4 - \mu_X = -2.228 \mu_B, \ \mu_Y = -1.240 \mu_B.$ $E_{tot} = -285.47803 \ eV$

Двойная вдоль а объёмная ячейка

Заданные значения намагниченности: $Cr_1 - \mu_X = 3.000\mu_B, \ \mu_Y = 0.000\mu_B;$ $Cr_2 - \mu_X = 3.000\mu_B, \ \mu_Y = 0.000\mu_B;$ $Cr_3 - \mu_X = 0.000\mu_B, \ \mu_Y = 3.000\mu_B;$ $Cr_4 - \mu_X = 0.000\mu_B, \ \mu_Y = 3.000\mu_B.$

Полученные значения намагниченности: $Cr_1 - \mu_X = 1.982\mu_B, \ \mu_Y = -1.982\mu_B;$ $Cr_2 - \mu_X = 1.982\mu_B, \ \mu_Y = -1.982\mu_B;$ $Cr_3 - \mu_X = 1.982\mu_B, \ \mu_Y = -1.982\mu_B;$ $Cr_4 - \mu_X = 1.982\mu_B, \ \mu_Y = -1.982\mu_B.$ $E_{tot} = -301.85300 \ eV$

Двойная вдоль а ячейка плёнки

Заданные значения намагниченности: $Cr_1 - \mu_X = 3.000\mu_B, \ \mu_Y = 0.000\mu_B;$ $Cr_2 - \mu_X = 3.000\mu_B, \ \mu_Y = 0.000\mu_B;$ $Cr_3 - \mu_X = 0.000\mu_B, \ \mu_Y = 3.000\mu_B;$ $Cr_4 - \mu_X = 0.000\mu_B, \ \mu_Y = 3.000\mu_B.$

Полученные значения намагниченности: $Cr_1 - \mu_X = 2.375\mu_B, \mu_Y = -2.343\mu_B;$ $Cr_2 - \mu_X = 1.858\mu_B, \mu_Y = -1.852\mu_B;$ $Cr_3 - \mu_X = 2.090\mu_B, \mu_Y = -2.066\mu_B;$ $Cr_4 - \mu_X = 2.260\mu_B, \mu_Y = -2.229\mu_B.$ $E_{tot} = -301.83661 \ eV$

Двойная вдоль а и с объёмная ячейка

Заданные значения намагниченности: $Cr_1 - \mu_X = 3.000 \mu_B, \ \mu_Y = 0.000 \mu_B;$ $Cr_2 - \mu_X = 3.000 \mu_B, \ \mu_Y = 0.000 \mu_B;$ $Cr_3 - \mu_X = 3.000 \mu_B, \ \mu_Y = 0.000 \mu_B;$ $Cr_4 - \mu_X = 3.000 \mu_B, \ \mu_Y = 0.000 \mu_B;$ $Cr_5 - \mu_X = 0.000 \mu_B, \ \mu_Y = 3.000 \mu_B;$ $Cr_6 - \mu_X = 0.000 \mu_B, \ \mu_Y = 3.000 \mu_B;$ $Cr_7 - \mu_X = 0.000 \mu_B, \ \mu_Y = 3.000 \mu_B;$ $Cr_8 - \mu_X = 0.000 \mu_B, \ \mu_Y = 3.000 \mu_B.$

Полученные значения намагниченности: $Cr_1 - \mu_X = 2.788 \mu_B, \ \mu_Y = 0.220 \mu_B;$ $Cr_2 - \mu_X = -1.572 \mu_B, \ \mu_Y = 2.329 \mu_B;$ $Cr_3 - \mu_X = 2.787 \mu_B, \ \mu_Y = 0.221 \mu_B;$ $Cr_4 - \mu_X = -1.572 \mu_B, \ \mu_Y = 2.329 \mu_B;$ $Cr_5 - \mu_X = 1.572 \mu_B, \ \mu_Y = 2.329 \mu_B;$ $Cr_6 - \mu_X = -2.787 \mu_B, \ \mu_Y = 0.220 \mu_B;$ $Cr_7 - \mu_X = 1.572 \mu_B, \ \mu_Y = 2.329 \mu_B;$ $Cr_8 - \mu_X = -2.787 \mu_B, \ \mu_Y = 0.220 \mu_B.$ $E_{tot} = -603.67982 \ eV$

Четырёхкратная вдоль с объёмная ячейка

Заданные значения намагниченности: $Cr_1 - \mu_X = 3.000\mu_B, \ \mu_Y = 0.000\mu_B;$ $Cr_2 - \mu_X = 3.000\mu_B, \ \mu_Y = 0.000\mu_B;$ $Cr_3 - \mu_X = 3.000\mu_B, \ \mu_Y = 0.000\mu_B;$ $Cr_4 - \mu_X = 3.000\mu_B, \ \mu_Y = 0.000\mu_B;$ $Cr_5 - \mu_X = 0.000\mu_B, \ \mu_Y = 3.000\mu_B;$ $Cr_6 - \mu_X = 0.000\mu_B, \ \mu_Y = 3.000\mu_B;$ $Cr_7 - \mu_X = 0.000\mu_B, \ \mu_Y = 3.000\mu_B;$ $Cr_8 - \mu_X = 0.000\mu_B, \ \mu_Y = 3.000\mu_B.$

Полученные значения намагниченности: $Cr_1 - \mu_X = 2.791\mu_B, \ \mu_Y = -0.047\mu_B;$ $Cr_2 - \mu_X = 0.679\mu_B, \ \mu_Y = 0.679\mu_B;$ $Cr_3 - \mu_X = 2.535\mu_B, \ \mu_Y = -1.192\mu_B;$ $Cr_4 - \mu_X = -2.264\mu_B, \ \mu_Y = -2.264\mu_B;$ $Cr_5 - \mu_X = 0.433\mu_B, \ \mu_Y = 2.769\mu_B;$ $Cr_6 - \mu_X = -0.951\mu_B, \ \mu_Y = -2.635\mu_B;$ $Cr_7 - \mu_X = 1.438\mu_B, \ \mu_Y = 2.403\mu_B;$ $Cr_8 - \mu_X = -1.942\mu_B, \ \mu_Y = -2.004\mu_B.$ $E_{tot} = -603.67982 \ eV$

Десятикратная вдоль с объёмная ячейка

Десятикратная вдоль с ячейка немагнитной плёнки

 E_{tot} = -1405.50157 eV

	quantity of cels			1		2							4				8				10					
	quantity of cels for abc-axis	1				2c				2a				2c 2a				4c				10c				
	type of struct	bu	ılk	fi	film		bulk (8kpt)		film		bulk		film		bulk		film		bulk		film		bulk		film	
	E tot (eV)	-150.92575		-142.71310		-301.83661		-285.47803		-301.85301		-289.43249		-603.67982		-578.86549		-603.67982		(calculating)		-1508.99256				
	component of magn	х	У	х	y	х	y	х	у	х	y	х	y	х	у	х	у	х	y	х	у	х	у	х	y	
	1	1.981	-1.981	-0.072	-3.003	2.791	-0.027	1.343	-1.497	-1.982	-1.982	2.375	-2.343	2.788	0.220	3.320	0.229	2.791	-0.047			2.809	-0.021			
	2	1.982	-1.981	3.018	-0.077	-1.572	2.327	-1.918	2.460	-1.982	-1.982	1.858	-1.852	-1.572	2.329	-1.906	2.748	0.679	0.679			-2.813	0.111			
	3							1.566	2.011	-1.982	-1.982	2.090	-2.066	2.787	0.221	2.151	1.512	2.535	-1.192			2.808	-0.199			
	4							-2.228	-1.240	-1.982	-1.982	2.260	-2.229	-1.572	2.329	-1.700	1.997	-2.264	-2.264			-2.800	0.289			
	5													1.572	2.329	1.713	2.377	0.433	2.769			2.790	-0.376			
	6													-2.787	0.220	-2.816	0.836	-0.951	-2.635			-2.777	0.462			
	7													1.572	2.329	1.967	2.500	1.438	2.403			2.762	-0.547			
22	8													-2.787	0.220	-3.150	0.456	-1.942	-2.004			-2.744	0.634			
ton	9																					2.723	-0.720			
Cra.	10																					-2.700	0.799			
er (11																					0.076	2.814			
qur	12																					-0.157	-2.810			
ž	13																					0.246	2.804			
	14																					-0.333	-2.795			
	15																					0.419	2.784			
	16																					-0.504	-2.770			
	17																					0.590	2.753			
	18																					-0.678	-2.733			
	19																					0.763	2.711			
	20																					-0.848	-2.678			
	calc time (hrs)	2.34		87.2		30.9		27.5		3.17		29.2		39.94		135.22		52.4		> 110		297.3		?10 months?		
	cores	4 epyc_7302		4 epyc_7302		24 epyc_7302		20 POWER8		24 epyc_7302		8 epyc_7302		24 epyc_7302		16 epyc_7302		16 epyc_7302		80 POWER8		16 epyc_7302		16 epyc_7302		

Значения намагниченности атомов Сг, полная энергия системы и расчётное время.

- В данной работе было проведено моделирование одноосного кирального гелимагнетика в рамках первопринципного пакета VASP.
- Выявлено гелимагнитное состояние в объемной и плёночной структуре.
- Был проведен расчет для структуры размером 12 нм.
- Были вычислены магнитные моменты атомов хрома в различных ячейках неколлинеарным подходом, а так же полные энергии систем.

Спасибо за внимание!

Ресурсоёмкость относительно k-points

Рис. 8. Время и оперативная память на один MPI-поток, затраченные на расчёт одинарной объёмной ячейки CrNb₃S₆.

Дмитрий Евсин

Химия под знаком СИГМА

Плавление солитонной решетки CrNb₃S₆

Рис. 9. Плавление КСР во внешнем магнитном поле в $CrNb_3S_6$ [12].

¹²Y. Togawa et al., Phys. Rev. Lett. 108, 107202 (2012);

Рис. 10. Плавление КСР во внешнем магнитном поле в в тонком сколе $CrNb_3S_6$ [14].

¹⁴Y. Togawa et al., Phys. Rev. Lett. 122, 017204 (2019);

Использовался пакет VASP (Vienna Ab Initio Simulation Package) - это комплексный пакет для выполнения ab initio квантового механического моделирования с использованием псевдопотенциалов или метода проекционных волн и базисного набора плоских волн. Подход, реализованный в VASP, основан на приближении локальной плотности (конечной температуры) со свободной энергией как вариационной величиной и точной оценке мгновенного основного состояния электрона на каждом временном шаге. VASP использует эффективные схемы диагонализации матрицы и эффективное смешение плотности заряда Бройдена. Взаимодействие между ионами и электронами описывается методом проекционно-усиленной волны (PAW). РАШ позволяет значительно уменьшить количество плоских волн на атом для переходных металлов и элементов первого ряда. Силы и полный тензор напряжений могут быть рассчитаны с помощью VASP и использованы для релаксации атомов в их мгновенное основное состояние.

В основе первопринципных расчетов электронной и кристаллической стуктуры магнитных материалов лежит спиновая теория функционала плотност и(SDFT). Теория функционала плотности - один из широко используемых методов расчета электронной структуры систем многих частиц в квантовой физике и квантовой химии как молекул так и конденсированного вещества. Основная идея SDFT - при описании электронной подсистемы, заменить многоэлектронную волновую функцию $\Psi(r_1,...,r_N)$ электронной плотностью $\rho(r)$, чтобы уменьшить число свободных переменных. Чтобы обеспечить возможность расчета магнитных свойств, энергия системы записывается в виде функционала не только электронной плотности $\rho(r)$, но и плотности намагниченности m(r).

Волновые функции Кона-Шэма заменяются двухкомпонентными волновыми функциями Паули $\Psi_{\alpha i}(r)$ способны представлять как плотность электронов и намагниченную плотность. Индекс α обозначает здесь спиновые состояния.

ab initio

$$\rho(r) = \left\langle \Psi | \sum_{i=1}^{N} \delta(r - r_i) | \Psi \right\rangle = \sum_{v=1}^{N} \sum_{a=1,2} |\Psi_v(r)|^2$$
(9)

$$m(r) = \sum_{\nu=1}^{N} \Psi_{\nu}^{*}(r) \sigma \Psi_{\nu}(r)$$
(10)

$$\sigma = \sigma_x \hat{x} + \sigma_y \hat{y} + \sigma_z \hat{z},\tag{11}$$

где σ_x , σ_y и σ_z матрицы Паули.

Из вариационного принципа получаются уравнения Кона-Шэма, аналогичные уравнениям Шредингера-Паули.

$$\left\{-\frac{\hbar^2}{2m}\nabla^2 + V_{eff} + \sigma \cdot B_{eff}(r) - \varepsilon_v\right\}\Psi_v(r) = 0$$
(12)

Эффективное магнитное поле B_{eff} состоит из вклада B_{xc} возникающего из обменно-корреляционной энергии и вклада B_{ext} из внешнего поля.

$$B_{eff} = B_{xc} + B_{ext} \tag{13}$$

$$B_{xc} = \frac{\partial E_{xc}[\rho(r), m(r)]}{\partial m(r)}$$
(14)

Включение спин-орбитальной связи (SOC) в обычном вычислении DFT добавляет дополнительный член $H_{soc}^{\alpha\beta} \propto \vec{\sigma} \cdot \vec{L}$ к гамильтониану, который связывает оператор спина Паули $\vec{\sigma}$ с оператором углового момента $\vec{L} = \vec{r} \times \vec{p}$. [15] В качестве релятивистской поправки SOC действует в непосредственной близости от ядер, так что предполагается, что вклады H_{soc} за пределами PAW незначительны. Таким образом, VASP вычисляет матричные элементы H_{soc} только для одноцентровых вкладов всех электронов

$$E_{soc}^{ij} = \delta_{\mathbf{R}_{i}\mathbf{R}_{j}} \delta_{l_{i}l_{j}} \sum_{n\mathbf{k}} w_{\mathbf{k}} f_{n\mathbf{k}} \sum_{\alpha\beta} \langle \tilde{\psi}_{n\mathbf{k}}^{\alpha} | \tilde{p}_{i} \rangle \langle \phi_{i} | H_{soc}^{\alpha\beta} | \phi_{j} \rangle \langle \tilde{p}_{j} | \tilde{\psi}_{n\mathbf{k}}^{\beta} \rangle$$
(15)

где $\phi_i(\mathbf{r}) = R_i(|\mathbf{r} - \mathbf{R}_i|)Y_{l_im_i}(\hat{\mathbf{r} - \mathbf{R}_i})$ - парциальные волны атома с центром в \mathbf{R}_i , $\tilde{\psi}^{\alpha}_{n\mathbf{k}} - -$ спинорная компонента α псевдоорбитали с индексом полосы пропускания n и вектором Блоха \mathbf{k} , а $f_{n\mathbf{k}}$ и $w_{\mathbf{k}}$ являются Ферми- и k-точками, соответственно[10].

¹⁵Steiner S., Khmelevskyi S., Marsman M., Kresse G., Phys. Rev. B – 2016. V. 93, 224 – P425.

Двойная вдоль a и c ячейка плён

Заданные значения намагниченности: $Cr_1 - \mu_X = 3.000\mu_B, \ \mu_Y = 0.000\mu_B;$ $Cr_2 - \mu_X = -3.000\mu_B, \ \mu_Y = 0.000\mu_B;$ $Cr_3 - \mu_X = 3.000\mu_B, \ \mu_Y = 0.000\mu_B;$ $Cr_4 - \mu_X = -3.000\mu_B, \ \mu_Y = 0.000\mu_B.$ $Cr_5 - \mu_X = 0.000\mu_B, \ \mu_Y = 3.000\mu_B.$ $Cr_6 - \mu_X = 0.000\mu_B, \ \mu_Y = -3.000\mu_B.$ $Cr_7 - \mu_X = 0.000\mu_B, \ \mu_Y = -3.000\mu_B.$ $Cr_8 - \mu_X = 0.000\mu_B, \ \mu_Y = -3.000\mu_B.$

Полученные значения намагниченности: $Cr_1 - \mu_X = 3.320\mu_B, \ \mu_Y = 0.229\mu_B;$ $Cr_2 - \mu_X = -1.906\mu_B, \ \mu_Y = 2.748\mu_B;$ $Cr_3 - \mu_X = 2.151\mu_B, \ \mu_Y = 1.512\mu_B;$ $Cr_4 - \mu_X = -1.700\mu_B, \ \mu_Y = 1.997\mu_B.$ $Cr_5 - \mu_X = 1.713\mu_B, \ \mu_Y = 2.377\mu_B.$ $Cr_6 - \mu_X = -2.816\mu_B, \ \mu_Y = 0.836\mu_B.$ $Cr_7 - \mu_X = 1.967\mu_B, \ \mu_Y = 2.500\mu_B.$ $Cr_8 - \mu_X = -3.150\mu_B, \ \mu_Y = 0.456\mu_B.$ $E_{tot} = -578.86547eV$

